AMD 700 chipset series

AMD 700 chipset series/
AMD 7-Series Chipsets
Codename(s) Wahoo (790FX, Quad FX)
Hammerhead (790FX)
Seahorse (780G)
Mahogany (780E)
CPU supported Phenom series
Athlon 64 series
Sempron series
Turion 64 X2 series
Socket supported Socket F+/F (790FX/DSDC)
Socket AM2+, AM2, AM3
Socket S1
Southbridge(s) SB600, SB700, SB710, SB750
Desktop / mobile chipsets
Enthusiast segment 790FX
Performance segment 790GX, 790X,
M780T (Mobile)
Mainstream segment 780G, 785G, 770, 760G
M780G (Mobile)
Value segment 780V, 740G, 740
M740G (Mobile)
Embedded chipsets
780E, 785E
Miscellaneous
Release date(s) November 19, 2007
(790FX, 790X, 770)
March 4, 2008 (780G, 740G)
April 28, 2008 (780V)[1]
June 4, 2008 (M780G)
August 6, 2008 (790GX)
October 26, 2008 (780E)
April 26, 2010 (785E)
IGP Direct3D support 10.1 (785G, 785E)
10.0 (790GX, 780 series, 760G)
9.0b (740G)
Predecessor AMD 690 chipset series
Successor AMD 800 chipset series

The AMD 700 chipset series (also called as AMD 7-Series Chipsets) is a set of chipsets designed by ATI for AMD Phenom processors to be sold under the AMD brand. Several members were launched in the end of 2007 and the first half of 2008, others launched throughout the rest of 2008.

Development history

The existence of the chipsets was proven in October 2006 through two hardware websites in Chile[2] and Spain[3] which posted the leaked slides of an ATI internal event, "ATI chipset update". In the slides, ATI has shown a series of RD700 series chipset logics codenamed RD790, RX790, RS780 and RS740 respectively. A SB700 southbridge was also mentioned in the event. The 790X (codename RD780) chipset was spotted in Computex 2007, exhibited by ASUS, while the SB750 southbridge was reported by VR-Zone.[4] The RS780D was first reported by HKEPC[5] while the RX780H was first seen on ECS internal presentations.[6]

After the acquisition of ATI Technologies, AMD started to participate in the development of the chipset series. And as a result, the first performance and enthusiast segment chipsets products under the AMD brand, the 790FX, 790X and 770 chipsets were launched on November 19, 2007 as part of the Spider codenamed desktop performance platform. The 780 chipset series, first launched in China on January 23, 2008, and released worldwide on March 5, 2008 during CeBIT 2008,[7] mobile chipsets (M740G, M780G and M780T chipsets) were released on June 4, 2008 during Computex 2008 as part of the Puma mobile platform and the 790GX chipset was released on August 6, 2008, while some other members released at a later date in 2008. The 785G was announced on August 4, 2009.

Line-up

790FX

790X

790GX

785G

785E

780G/780V

780E

770

760G

740G

740

Southbridges

Besides the use of SB600 southbridge for earlier releases of several members in late 2007, all of the above chipsets can also utilize newer southbridge designs, the SB700, SB710 and the SB750 southbridges. Future server chipsets will also utilize the server version (SB700S/SB750S) of the southbridges. Features provided by the southbridge are listed as follows:

SB700

SB710

SB750

SP5100

SB750S

Key features

Multi-graphics

The ATI CrossFire X technology supports multiple video cards to be connected to enhance the visual display and 3D rendering capabilities of the system, using AFR mode and/or scissor mode. Alternatively, systems with multiple video card CrossFire X setup will support multiple display monitors up to eight.

For the AMD 790FX chipset, the CrossFire X[39] technology allows up to 4 video cards to be connected, made possible as the chipset supports four physical PCI-E x16 slots[10]. The PCI-E lanes can be configured for 4 slots at x8 bandwidth or 2 slots at x16 bandwidth (16x-16x, 8x-8x-8x or 8x-8x-8x-8x CrossFire X setup). Reports indicate 2.6 times the performance with triple-card CrossFire than that of a single card,[40] and more than 3.3 times the performance increase for quad-card CrossFire[39]. Gigabyte have revealed in a leaked product presentation that the four card CrossFire X setup does not require CrossFire connectors[41]; the data will be exchanged among the PCI-E slots which is monitored and controlled by Catalyst drivers.

For the performance segment, CrossFire on the AMD 790X chipset has two physical PCI-E x16 slots[10] with one operating at x8 bandwidth (dual-card 8x-8x CrossFire), supporting up to four display monitors.

Multi-graphics is also supported for the 790GX IGP chipset, named as Hybrid CrossFire X.

AMD OverDrive

AMD OverDrive
Developer(s) AMD
Stable release 3.2.3
Operating system Windows
Type Performance tuning
License Proprietary
Website sites.amd.com/us/game/downloads/amd-overdrive/

Another feature is AMD OverDrive, an application designed to boost system performance through a list of items in real-time, without a system reboot, as listed below:

The application will support all members of the AMD 700 chipset series, including the 740 series chipsets which are aimed at value markets, and AMD processors including Phenom and Athlon 64 family of processors, but due to architectural limitations, independent clock frequency settings for different processor cores (a feature implemented in the K10 microarchitecture) will not function on Athlon 64 family of processors (except for Athlon X2 7000 series which is based on K10).

AutoXpress

The AutoXpress technology is a set of automatic system tuning features to enhance system performance, which were revealed by members of ChileHardware when investigating the BIOS for AMD 790FX, 790X and 770 chipsets[42]. AutoXpress will be available on AMD 790FX (codenamed RD790) chipset, with AMD 790X (codenamed RD780) and AMD 770 (codenamed RX780) chipsets implementing a subset of all the features. The AutoXpress technology is similar to the LinkBoost capability presented on NVIDIA nForce 500/600 chipsets.

The feature must be enabled via BIOS, options appeared in the BIOS includes ON/OFF/Custom, which choosing the "Custom" option will open up three further options, namely "CPU", "XpressRoute" and "MemBoost" with ON/OFF options, and ON as default. Details about the AutoXpress features are listed as follows:

AutoXpress
CPU
Availability CPU supported Other hardware Particulars
790FX, 790X, 770 AMD Phenom family N/A Change CPU ClkDivisor to “Divide-by-1” mode,
allowing 1 MHz frequency intervals tuning
XpressRoute
Availability CPU supported Other hardware Particulars Overclocking frequencies
Min. Default Max. possible
790FX, 790X All AMD Processors
(Socket AM2+/AM2
and Socket F+/F)
Radeon R580 and
Radeon R600 based
video cards
PCI-E clock overclocking, to accelerate
data transfer to and from video cards
by increasing PCI-E bandwidth
100 MHz 125 MHz 150-160 MHz
All CrossFire-enabled
(software/hardware)
Radeon video cards
Allowing point-to-point transfer between
multiple-video card setup
N/A
HT 1.0-enabled processors
(All K8-based processors,
including Opteron 1000 series)
All Radeon video cards Double pumping graphics data
across the CPU HyperTransport link
MemBoost
Availability CPU supported Other hardware Particulars
790FX, 790X All K8-based processors DDR2-800
memory modules
Tweaking CAS latencies, as follows:
tRC, tWR reduced by 2; tRRD, tWTR reduced by 1;
tREF set to 7.8 μs from originally 3.9 μs; Enabling "Bank Swizzle Mode"; and
Increase Bank Bypass Maximum to 7x
All AMD processors
(Socket AM2+/AM2
and Socket F+/F)
DDR2 memory modules Disable the "PowerDown" mode of
DRAM modules (setting the register to "0")
790FX Read performance SPD settings of high-end modules and
set as default, giving maximum performance

Advanced Clock Calibration

Advanced clock calibration (ACC) is a feature originally available for Phenom families of processors, particularly for Black Edition ones, to increase the overclocking potential of the CPU. ACC is supported by the SB710 and the SB750 southbridges, and available through BIOS settings on some motherboards and AMD OverDrive utility.[43]

It was later discovered that this functionality has the possibility of unlocking the supposedly disabled cores of some Phenom II X2/X3 processors. In normal cases, it is not possible to use or unlock any of those hidden cores because originally those cores were disabled: a technique called "chip harvesting" or "feature binning" used by AMD to sell parts with one or two defective cores which will cause system instability if not disabled.

The following are available through the Advanced Clock Calibration feature:

  1. Auto or manual settings
  2. Allow separate settings for each of the CPU cores
  3. Allowed range: -12% to +12%
  4. Possibility of unlocking AMD Phenom II X2/X3, AMD Athlon II X2/X3 and AMD Sempron locked cores / cache. (with BIOS support)

The principle of ACC is not publicly discussed by AMD but some third-party vendors, including ASUS (Core Unlocker)[44] and Biostar (BIO-unlocKING)[45] have had it for some time. Gigabyte has added this feature, called CPU Core Control, to many NB785/SB710 boards via BIOS update[46], and will be including this feature (now called Auto Unlock) in all of their 800 Series boards with the SB850 chip[47]. On many of the boards, the feature is dependent on BIOS version. While NVIDIA also has a similar technology for its nForce 780a motherboards, called NVCC (NVIDIA Clock Calibration) with very similar functionality.

Energy efficiency

One of the major focus of the chipset series is the energy efficiency of the chipsets. The need for energy-efficient chipsets have risen since chipsets starts including more features and more PCI Express lanes, to provide better system scalability by using PCI-E add-on cards.

But one issue is that chipset circuitries were usually made on a larger fabrication process nodes compared with the latest CPU process node, making recent chipsets to consume more and more power than their predecessors. Recent examples including the Intel X38 chipset Northbridge (MCH), labelling 26.5 W TDP with a maximum idle power of 12.3 W[48], which results in the world's first integrated heat spreader (IHS) design over the chip to help heat spread evenly, with ASUS even adding water cooling block directly on top of the heatsink of the X38 Northbridge as a part of the motherboard heatpipe system. Although the aforementioned figures may be small compared to the TDP figures of a performance CPU, there is a growing demand for computer systems with higher performance and lower power consumption. While Intel focuses only on the energy efficiency of its processors, NVIDIA's nForce 780i chipset requires an overall power consumption of 48 W with the northbridge, southbridge and the nForce 200 PCI-E bridge[49].

In response to this, all discrete northbridges of the chipset series were designed on a 65 nm CMOS process, manufactured by TSMC, aimed at lowering power consumptions of chipsets. According to internal testing and various reports, the Northbridge of the AMD 790FX chipset (RD790) runs at 3 W when idle, and maximum 10 W under load[40], nominal 8 W power consumption, the northbridge was seen on reference design of the AMD 790FX chipset with single passive cooling heatsink instead of connecting to heat pipes which are frequently used on current performance motherboard offers[49], the chipset on the whole (the combination of RD790 Northbridge and SB600 Southbridge) consumes nominally less than 15 W[50].

The integrated graphics northbridges were also benefited, as most of the IGP northbridges were made on 55 nm process manufactured by TSMC with the inclusion of ATI PowerPlay technology, allowing dynamically changing the core clock frequency to minimum 150 MHz[15]. The 780G Northbridge, sporting DirectX 10 support, consumes only 11.4 W on full load[20], 0.94 watt when idle[51]. This is also smaller than the TDP figures of the Intel G35 chipset Northbridge at 28 W with the maximum idle power of 11 W[52].

ATI Hybrid Graphics

The ATI Hybrid Graphics technology applies to all or some of the integrated graphics chipsets of this chipset series, technologies including Hybrid CrossFire X, SurroundView and PowerXpress. Reports confirmed that the 790GX IGP (codenamed RS780D) chipset will be able to handle dual video card and IGP as a CrossFire X setup[5]. Hybrid Graphics are only available with 24xx, 34xx, & 42xx model ATI graphics cards.

I/O acceleration technologies

All chipsets paired with either SB700, SB710 or SB750 southbridge will support two I/O acceleration technologies, as listed below:

Hybrid Drives

The southbridges also support hybrid drives via SATA or supported ATA ports, which is compliant with the requirements of the Windows ReadyDrive technology, which is basically a conventional hard drive with an embedded NAND flash module.

HyperFlash

The HyperFlash, basically a NAND flash module on a card, originally planned as a device connected to the supported IDE/ATA 66/100/133 channel, to speed up system performance[53] through the Windows ReadyBoost and Windows ReadyDrive functionality.

A HyperFlash module consists of two parts, the first part is a HyperFlash memory card which are flash memory chips on a small PCB (dimensions similar to a Canadian quarter 25¢, with diameter 23.88 mm, but rectangular in shape) with contacts similar to SO-DIMM modules. The other part is a flash controller on an ATA connector, with similar latches/socket ejectors as SO-DIMM sockets. The HyperFlash memory card is inserted into the flash controller and then directly plugged into the motherboard ATA connector. The memory chips used on the HyperFlash memory card will be Samsung's OneNAND flash memory modules with maximum four-die configuration (four-die in a single package), running at 83 MHz frequency[54], providing a bandwidth of 108 MB/s on a 16-bit bus width. Since the flash controller is designed to be compatible with ATA pin-out definitions (also to fit the ATA motherboard connector) and is designed by Molex, this allows OEMs to produce their own brands of HyperFlash modules while at the same time providing maximum compatibility between HyperFlash modules.

Three variants were reportedly be available for HyperFlash modules, with capacity of 512 MiB, 1 GiB and 2 GiB respectively, with expected DVT samples in November 2007 and mass-production expected in December 2007 (supported by Beta motherboard drivers) and official motherboard driver support planned in February 2008.[55] However, it was reportedly cancelled.[56]

RAIDXpert

The RAIDXpert is a remote RAID configuration tool, for changing the RAID level of the RAID setup connected via SATA 3.0 Gbit/s ports (connected to SB600, excluding extra SATA 3.0 Gbit/s ports through additional SATA chip on some motherboard implementations), including RAID 0, RAID 1, and RAID 0+1.

Integrated graphics

Some of the members of the AMD 700 chipset series, specifically the 780 and 740 family of chipsets and the 790GX chipset, have integrated graphics onboard (IGP), as well as supporting hardware video playback acceleration at different levels. All IGP northbridges are pin-compatible to each other and even predecessors (690 series), to lower the product cost for each PCB redesign due to pin incompatibility and maximize the product lineup. These IGP features are listed below:

IGP features
Chipset/
Codename
Gfx model
(Radeon)
DirectX API supported IGP frequency Video playback
acceleration
Video formats
decoding support
Multi-graphics Other video features Native video output support SurroundView
(Multi-display)
AVIVO AVIVO HD+
UVD+AVP
MPEG-2 H.264 VC-1 DisplayPort
(with DPCP)
HDMI 1.2a
(with HDCP)
DVI
(with HDCP)
D-Sub
785E/RS785E HD 4200 10.1 Yes Yes, UVD 2 Yes Full Full Hybrid CrossFire X Dual video stream1 Yes Yes Yes Yes Yes
785G/RS880 HD 4200 500 MHz Yes Yes, UVD 2 Yes Full Full ATI Hybrid Graphics Dual video stream1 Yes Yes Yes Yes Yes
790GX/RS780D HD 3300 10.0 700 MHz Yes Yes Partial Full Full Hybrid CrossFire X Dual video stream1 Yes Yes Yes Yes Yes
780E/RS780E HD 3200 500 MHz Yes Yes Partial Full Full Hybrid CrossFire X Dual video stream1 Yes Yes Yes Yes Yes
780G/RS780 HD 3200 500 MHz Yes Yes Partial Full Full ATI Hybrid Graphics Dual video stream1 Yes Yes Yes Yes Yes
780V/RS780C 3100 350 MHz Yes No Partial Partial Partial No N/A No Yes Yes Yes Yes
760G/RS760 3000 350 MHz Yes No Partial Partial Partial ATI Hybrid Graphics N/A Depends Depends Yes Yes No
740G/RS740 2100 9.0 Yes No Partial Partial Partial No N/A No Yes Yes Yes No
Notes:
  1. Dual video stream may include the following at a maximum total bitrate of 40 Mbit/s:
    • 2 HD video streams OR
    • 1 HD video stream + 1 SD video stream + 1 HD audio stream
  2. 760G supports DisplayPort and HDMI signals as video output, but actual implementation will depend on different motherboard designs.[57]

"Remote IT"

For the enterprise platform, the "Remote IT" technology (temporary name) was reported to be released by the end of 2007 or early 2008. The platform composed of an AMD 780V chipset with an SB700 southbridge, and chips from Broadcom, Realtek and Marvell[35]. It was reported to have incorporated the Broadcom BCM5761 managed NIC controller with Intelligent Platform Management Interface (IPMI) 1.5 manageability standard[58], together with DASH 1.0 specification (DASH page on DMTF) support of the SB700 and SB750 southbridges, and reported support additional management and security technologies such as IDM (Intelligent Device Management) and TPM 1.2 (Trusted Platform Module).[35]

Reception

In a comparison against the GeForce 8200, Anandtech considered the 780G "a better balanced chipset offering improved casual gaming performance, equal video quality, similiar [sic] power requirements, greater availability, and better pricing."[59] The 8200, however, was preferred as a single-purpose HTPC solution. Both chipsets were considered superior to Intel's G45/X4500HD, which was cited for a lack of driver quality and features, and a higher price.[59]

Northbridge issues(760G, M770, 780x, M780x, 790GX)

Southbridge issues(SB7x0)

Most OSes require patches in order to work reliably.

See also

References

  1. ^ AMD Business Class Press Release. Retrieved June 7, 2008.
  2. ^ ATI targets next-gen Athlon 64 FX with four-GPU chipset?
  3. ^ MadBoxPC reporting "ATI chipset update"
  4. ^ a b VR-Zone report
  5. ^ a b c (Chinese) HKEPC report: AMD touts Hybrid Crossfire X technology, combining IGP and GPU, available in Q2 2008. Retrieved December 12, 2007.
  6. ^ (Chinese)"RS780 and MCP78 to be released soon. ECS talks about Black Series Motherboards.". Hong Kong: PCweekly. 2008-01-17. 
  7. ^ DigiTimes report. Retrieved January 25, 2008.
  8. ^ Fudzilla report. Retrieved October 8, 2007. Archived October 11, 2007 at the Wayback Machine
  9. ^ [1]. Retrieved September 12, 2007.
  10. ^ a b c d e f (Spanish) ChileHardware discussion thread
  11. ^ VR-Zone report. Retrieved October 24, 2007.
  12. ^ a b TG Daily report. Retrieved July 27, 2007.
  13. ^ TechConnect Magazine report. Retrieved October 17, 2007.
  14. ^ The Inquirer report. Retrieved January 31, 2008.
  15. ^ a b (Chinese) "First look at Hybrid CrossFire. AMD RS780+SB700 enters the stage.". Hong Kong: PCWeekly. 2008-01-24. 
  16. ^ a b (Spanish) ChileHardware report. Retrieved January 17, 2008.
  17. ^ a b Fudzilla report. Retrieved October 4, 2007. Archived October 14, 2007 at the Wayback Machine
  18. ^ a b (Chinese) HKEPC report. Retrieved October 25, 2007.
  19. ^ AnandTech: AMD 785G Update — Multi-Channel LPCM is not Available
  20. ^ a b c d e (Chinese) HKEPC review. Retrieved January 29, 2008.
  21. ^ a b Fudzilla report. Retrieved March 6, 2008. Archived March 8, 2008 at the Wayback Machine
  22. ^ a b HKEPC image. Retrieved February 19, 2008.
  23. ^ ChileHardWare thread
  24. ^ Bit-Tech report
  25. ^ C|Net Interview with AMD Fellow Maurice Steinman
  26. ^ The Inquirer report. Retrieved August 13, 2007.
  27. ^ RegHardware report
  28. ^ RegHardware report
  29. ^ DailyTech report
  30. ^ ECS products page, retrieved on October 4, 2007
  31. ^ Fudzilla report
  32. ^ Josh Walrath (August 8, 2008). "The Silent Release of the 740G". http://www.pcper.com/comments.php?nid=5998. 
  33. ^ DailyTech report, retrieved on October 8, 2007
  34. ^ X-bit labs report. Retrieved October 26, 2007.
  35. ^ a b c DigiTimes report. Retrieved July 21, 2007.
  36. ^ Fudzilla report, retrieved May 2, 2008 Archived April 24, 2008 at the Wayback Machine
  37. ^ (Japanese) PC Watch report. Retrieved August 20, 2008.
  38. ^ (Japanese) 4gamer.net coverage. Retrieved August 20, 2008.
  39. ^ a b VR-Zone report. Retrieved October 12, 2007.
  40. ^ a b Fudzilla report
  41. ^ VR-Zone report. Retrieved October 25, 2007.
  42. ^ ChileHardware discussion thread. Retrieved October 4, 2007.
  43. ^ http://www.anandtech.com/show/2573/2
  44. ^ http://usa.asus.com/FeatureList.aspx?PG_ID=mKyCKlQ4oSEtSu5m&F_ID=7131
  45. ^ http://www.biostar-usa.com/app/en%2Dus/event/biounlocking/model.htm
  46. ^ http://www.giga-byte.com/Support/Motherboard/BIOS_List.aspx?CPUType=Socket+AM3
  47. ^ http://www.giga-byte.com/FileList/WebPage/mb_amd800/images/amd800-models.htm
  48. ^ Intel Thermal and Mechanical Design Guidelines – For the Intel 82X38 Memory Controller Hub (MCH). September 2007, Revision -001, page 14 PDF (2.38 MB). Retrieved November 23, 2007.
  49. ^ a b The Inquirer report. Retrieved October 12, 2007.
  50. ^ The Inquirer report. Retrieved October 17, 2007.
  51. ^ (Chinese) PCZilla report. Test results according to AMD. Retrieved March 7, 2008.
  52. ^ Intel Thermal and Mechanical Design Guidelines – For the Intel 82G35 Graphics and Memory Controller Hub (GMCH). August 2007, Revision -001, page 14 PDF (1.42 MB). Retrieved November 23, 2007.
  53. ^ DailyTech report
  54. ^ Samsung OneNAND product identification guide. Retrieved October 25, 2007.
  55. ^ (Chinese) HKEPC report. Retrieved October 25, 2007.
  56. ^ TGDaily report. Retrieved June 4, 2008.
  57. ^ AMD 760G product slide. Retrieved January 20, 2009.
  58. ^ DailyTech report. Retrieved August 1, 2007.
  59. ^ a b The IGP Chronicles Part 2: AMD 780G vs. Intel G45 vs. NVIDIA GeForce 8200
  60. ^ http://support.microsoft.com/kb/959345
  61. ^ http://support.microsoft.com/kb/982091
  62. ^ http://support.microsoft.com/kb/956871
  63. ^ http://support.microsoft.com/kb/953689
  64. ^ http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=73472a46b5b28116b145fb5fc05242c1aa8e1461
  65. ^ http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=b09bc6cbae4dd3a2d35722668ef2c502a7b8b093
  66. ^ http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commit;h=a6825f1c1fa83b1e92b6715ee5771a4d6524d3b9
  67. ^ http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=commitdiff;h=bc38b411fe696fad32b261f492cb4afbf1835256

External links